STACIE FARMER @ OPENWEST 2019

HTTPS ALL THE THINGS!

WHO AM I?

- Stacie Farmer
- Owner of Mayet Security
 - Helping everyday people learn cybersecurity fundamentals
- Programmer, former community leader, endless learner
- NOT a cryptography expert

What is HTTP?

- How we deliver websites to users
- Clear, plaintext protocol
- Can be viewed and modified by MITM

An example of MITM modifying web traffic

ISP is constant MITM

Only modifies HTTP traffic

HTTP POST REQUEST

POST /ut/v3/prebid HTTP/1.1 Host: ib.adnxs.com User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0 Accept: */* Accept: Language: en-US,en;q=0.5 Accept-Encoding: gzip, deflate Referer: http://toontown.wikia.com/wiki/Gardening Content-Type: text/plain Content-Length: 1316 Origin: http://toontown.wikia.com Cookie: uuid2=4437431820410632482; anj=dTM7k!M40meTF>+ghqdmU(7TPXf6Z.#tB.21[vNEDWC1oHG`q4?nJZGBlt1^21=Hd)U`Hv80Zkp*x9JD0(Unv%\$K<R[W/7CKJk=_4CZ?vqIla-!3#]!] x'B%84'XDlWtu(JWE]V^hr\$Z5=h.VD2Zl*#AiNT04[f[n@1LB'4FzZ4H*<E]bM51_gJI:YH-P20u@jAC'0\$*bpRz*bd\$'6F1!A; icu=ChgIxIA9EA0YASABKAEwtNqG4AU4AUABSAEQtNqG4AUYAA.. Connection: close

{"tags":[{"sizes":[{"width":728, "height":90}, {"width":970, "height":250}], "primary_size":{"width":728, "height":90}, "ad_typ
es":["banner"], "uuid":"25c8a0bc24591bf", "id":11977073, "allow_smaller_sizes":false, "use_pmt_rule":false, "prebid":true, "dis
able_psa":true}, {"sizes":[{"width":300, "height":250}, {"width":300, "height":600}], "primary_size":{"width":300, "height":250
}, "ad_types":["banner"], "uuid":"266a88b294f843a", "id":11977073, "allow_smaller_sizes":false, "use_pmt_rule":false, "prebid":
true, "disable_psa":true}, {"sizes":[{"width":728, "height":90}, {"width":970, "height":250}], "primary_size":{"width":300, "height":250
},"ad_types":["banner"], "uuid":"266a88b294f843a", "id":11977073, "allow_smaller_sizes":false, "use_pmt_rule":false, "prebid":
true, "disable_psa":true}, {"sizes":[{"width":728, "height":90}, {"width":970, "height":250}], "primary_size":{"width":728, "height":90}, "ad_types":["banner"], "uuid":"27bd69bd58dddcd", "id":11977096, "allow_smaller_sizes":false, "use_pmt_rule":false, "prebid":
true, "disable_psa":true}, {"sizes":[{"width":160, "height":600}, {"width":300, "height":600}, {"width":300, "height":600}, {"width":300, "height":250
}], "primary_size":{"width":160, "height":600}, "ad_types":["banner"], "uuid":"27bd69bd58dddcd", "id":11977096, "allow_smaller_sizes":false, "use_pmt_rule":false, "prebid":true, "disable_psa":true}, {"sizes":[{"width":160, "height":600}, {"width":300, "height":600}, {"width":300, "height":600}, {"width":300, "height":250
}], "primary_size":{"width":160, "height":600}, "ad_types":["banner"], "uuid":"287f02e10323189", "id":11977016, "allow_smaller_sizes":false, "use_pmt_rule":false, "prebid":true, "disable_psa":true}], "sdk":{"source":"pijs", "version::"1.31.0"}, "gdpr_con
sent":{"consent_string":null, "consent_required":false}, "referrer_detection":{"rd_ref":"http%3A%2F%2Ftoontown.wikia.com%2F
wiki%2FGardening", "rd_top":true, "rd_ifs":0, "rd_stk":"http%3A%2F%2Ftoontown.wikia.com%2Fwiki%2FGardening"}}

Nothing sent over HTTP is private

POST data can still be viewed

Anything sent over HTTP is sent in plaintext

WHY DOES IT MATTER?

- Susceptible to MITM attacks:
 - Injecting malicious scripts, links, files, etc
 - Modifying or sniffing data
 - All around general spying

MITM Attacks

Anyone sitting between user and server can read, modify, and inject into the HTTP requests

Malware can be injected

Sensitive data can be stolen

All kinds of fun stuff

HTTPS ALL THE	THINGS - STACIE FARMER
WHAT IS HT	TPS?
► HTTPS =	HTTP over SSL/TLS
Not a par	rt of HTTP, but can be ADDED to it
Changing	g something you can see to something you can't
POST /GTSGIAG3 Host: ocsp.pki. User-Agent: Moz Accept: text/ht Accept-Language Accept-Encoding Content-Length: Content-Type: a Connection: clo	HTTP/1.1 goog illa/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60.0 ml,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 : en-US,en;q=0.5 : gzip, deflate 75 pplication/ocsp-request se ∭∭+∰∬∭∭∭©©cb200500u00 ∫J∰010 ∭∭w,P0gvv0-r0~0~0K ∭∰m00s20

An addition to HTTP

- ⁻ HTTP protocol is still used. It's encapsulated in a secure TLS connection.
- TLS handshake is initiated before HTTP requests are sent (example in bottom left-hand corner)
- Example above is a POST request like before. Turned web traffic from something anyone can see to something they can't.
- It's encrypted and complete gibberish now.

NUI EVER	ATHING IS ENCRYPTED
Chang	ing something you can see to something you can't
Can st	ill see some things
POST /GTSGIA Host: ocsp.p	G3 HTTP/1.1 ki.goog
POST /GTSGIA Host: ocsp.p User-Agent: Accept: text	G3 HTTP/1.1 ki.goog Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60. /html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
POST /GTSGIA Host: ocsp.p User-Agent: Accept: text Accept-Langu Accept-Encod	G3 HTTP/1.1 ki.goog Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60. /html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 age: en-US,en;q=0.5 ing: gzip, deflate
POST /GTSGIA Host: ocsp.p User-Agent: Accept: text Accept-Langu Accept-Encod Content-Leng Content-Type	G3 HTTP/1.1 ki.goog Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/20100101 Firefox/60. /html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 age: en-US,en;q=0.5 ing: gzip, deflate th: 75 : application/ocsp-request

Some metadata will still be visible

Everything in red box

Source & destination IPs; data packets need to know where they're going and where they came from.

Some info can still be gleaned, just not nearly as much

Confusion about what HTTPS really does

- Green lock & assume the website they're visiting is "safe"
- Only enables secure COMMUNICATION; doesn't guarantee data being sent is "clean" or "safe"
- Malicious websites use HTTPS to fool and prevent malware being detected
- No one can watch you download malware

Safe example - don't know what's inside; money or a deadly virus - protected from being viewed or stolen while in transit. Once opened, all bets are off.

SYMMETRIC KEY ENCRYPTION

- We both have the same key
- We can both encrypt & decrypt with our key
- Keys must be kept private
- Ultimate goal of TLS Handshake

- 2 Types of Key Encryption Symmetric & Asymmetric
- We'll be focusing on symmetric key encryption in this talk, but will briefly discuss asymmetric as well
- Symmetric is best & hardest to do. Goal of TLS handshake
- Keys must be kept private never passed across the wire; Depending on algorithm, they are computed independently by the browser & server but include values passed across the wire.
- ⁻ It works because of math. We want our keys to be mathematically impossible to guess by anyone observing these values being passed.
- Can read more about Diffie-Hellman if you want
- Once symmetric keys are created by both parties, secure communication tunnel exists

Briefly discuss asymmetric since it used by RSA for TLS handshake

- Allows the browser to send the server a secret value over the wire after its verified the server's digital certificate to prove its identity
- Server shares it public key (can share with anyone)
- Browser encrypts secret value with public key & sends it
- Can only be decrypted by the server with its private key
- Private keys must be kept private

Discuss TLS 1.2 first.

- Most widely used
- Talk about TLS 1.3 after
- Go through steps briefly
- Blue steps sent unencrypted
- Orange steps encrypted using symmetric keys

Client sends a hello message to the server

TLS 1.2: CLIENT HELLO

TLSv1.2 Record Layer: Handshake Protocol: Client Hello Content Type: Handshake (22) Version: TLS 1.0 (0x0301) Length: 512 Handshake Protocol: Client Hello Handshake Type: Client Hello (1) Length: 508 Version: TLS 1.2 (0x0303) Random: d97ede776765111ee28e6625e302e20d073884b9d786015f... Session ID Length: 32 Session ID: 33b18f066dd2e301e371d7fcdfe1c3d0d70f934c23a9aa09... Cipher Suites Length: 28 **Cipher Suites (14 suites)** Cipher Suite: TLS_AES_128_GCM_SHA256 (0x1301) Cipher Suite: TLS_CHACHA20_POLY1305_SHA256 (0x1303) Cipher Suite: TLS_AES_256_GCM_SHA384 (0X1302) Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xc02b) Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) Cipher Suite: TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xcca9)

TLS 1.2: CLIENT HELLO (CONTINUED...)

Extension: key_share (len_107)
Type: key_share (51)
Length: 107
Key Share extension
Client Key Share Length: 105
Key Share Entry: Group: secp256r1, Key Exchange length: 65
Group: secp256r1 (23)
Key Exchange Length: 65
Key Exchange: 0470ffcbf99bd4ca1df1c12701cb3435413c2e3e7ea2e6cb
Extension: supported_versions (len=9)
Type: supported_versions (43)
Length: 9
Supported Versions length: 8
Supported Version: TLS 1.3 (0x0304)
Supported Version: TLS 1.2 (0x0303)
Supported Version: TLS 1.1 (0x0302)
Supported Version: TLS 1.0 (0x0301)
Extension: signature_algorithms (len=24)
Extension: psk_key_exchange_modes (len=2)

TLS 1.2: SERVER HELLO

TLSv1.2 Record Layer: Handshake Protocol: Server Hello Content Type: Handshake (22) Version: TLS 1.2 (0x0303) Length: 89 Handshake Protocol: Server Hello Handshake Type: Server Hello (2) Length: 85 Version: TLS 1.2 (0x0303) Random: 0b78dd81c14e82e7a0fc09015ab95103c3c3a6f08f6665ac... Session ID Length: 32 Session ID: 30c588aafa634dfa601bcd8f7647fddae62a8ae5bd20f6c7... Cipher Suites Length: 28 Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) Compression Method: null (0) Extensions Length: 13 Extension: renegotiation_info (len=1) Extension: ec_point_formats (len=4)

TLS 1.2: SERVER CERTIFICATE

- Domain name of the server (common name)
- Public key
- Owner of the certificate (*subject*)
- Issuer of the certificate (certificate authority)

Expiration date	Client		Server
	Client Hello Supported cipher suites		Server Hello
Serial number	Key share	<u>ــــــــــــــــــــــــــــــــــــ</u>	Chosen cipher suite Key share Certificate & signature
	Finished		
Signature		<	Finished
5	HTTP GET		
		•	HTTP Answer

TLS 1.2: SERVER CERTIFICATE

```
TLSv1.2 Record Layer: Handshake Protocol: Certificate
   Content Type: Handshake (22)
   Version: TLS 1.2 (0x0303)
   Length: 2568
   Handshake Protocol: Certificate
      Handshake Type: Certificate (11)
      Certificate: 3082055f30820447a0038201020210017e45a31aa50bc350...
         signedCertificate
            serialNumber: 0x017e45a31aa50bc35053bc50f9b69bad
            Signature (sha256WithRSAEncryption)
               Algorithm ID: 1.2.840.113549.1.1.11 (sha256WithRSAEncryption)
            issuer:
               id-at-commonName=DigiCert SHA2 Secure Server CA
             validity
                notBefore: utcTime: 17-10-03 00:00:00 (UTC)
                notAfter: utcTime: 20-01-08 12:00:00 (UTC)
             subject:
                id-at-organizationName=Mozilla Corporation
                id-at-commonName=*.services.mozilla.com
          subjectPublicKey: 3082010a0282010100c1282a88266c85d9a4ee1e2ded6e42...
```


TLS 1.2: SERVER KEY EXCHANGE (ECDHE)

- Public Key
- Signature

TLS 1.2: SERVER HELLO DONE

TLS 1.2: SERVER KEY EXCHANGE (ECDHE)

TLSv1.2 Record Layer: Handshake Protocol: Server Key Exchange Content Type: Handshake (22) Version: TLS 1.2 (0x0303) Length: 333
Handshake Protocol: Server Key Exchange Handshake Type: Server Key Exchange (12) Length: 329
EC Diffie-Hellman Server Params Curve Type: named_curve (0x03) Named Curve: secp256r1 (0x0017) Pubkey Length: 65
Pubkey: 04c8c3b639e8f4cc992a9ceea395f5b21b39c1b6cbe979df... Signature Algorithm: rsa_pkcs1_sha512 (0x0601) Signature Length: 256
Signature: 67b69a99fac93f45e0a013f5fa806805aa05667596890fad...

TLS 1.2: SERVER HELLO DONE

TLSv1.2 Record Layer: Handshake Protocol: Server Hello Done Content Type: Handshake (22) Version: TLS 1.2 (0x0303) Length: 4 Handshake Protocol: Server Hello Done Handshake Type: Server Hello Done (14) Length: 0

TLS 1.2: CLIENT KEY EXCHANGE (ECDHE)

Public Key

TLS 1.2: CLIENT CHANGE CIPHER SPEC

TLS 1.2: CLIENT KEY EXCHANGE (ECDHE)

TLSv1.2 Record Layer: Handshake Protocol: Client Key Exchange
Content Type: Handshake (22)
Version: TLS 1.2 (0x0303)
Length: 70
Handshake Protocol: Client Key Exchange
Handshake Type: Client Key Exchange (16)
Length: 66
EC Diffie-Hellman Server Params
Pubkey Length: 65
Pubkey: 0492f91b91d25332b3d0c57f5b85187cdda60cbb06cb6fb3...

TLS 1.2: CLIENT CHANGE CIPHER SPEC

TLSv1.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec Content Type: Change Cipher Spec (20) Version: TLS 1.2 (0x0303) Length: 1 Change Cipher Spec Message

TLS 1.2: ENCRYPTED – CLIENT FINISH

TLSv1.2 Record Layer: Handshake Protocol: Encrypted Handshake Message Content Type: Handshake (22) Version: TLS 1.2 (0x0303) Length: 40 Handshake Protocol: Encrypted Handshake Message

TLS 1.2: SERVER CHANGE CIPHER SPEC

• To use symmetric keys

TLS 1.2: ENCRYPTED – SERVER FINISHED

 Application data can now begin flowing between client and server - encrypted
 Client Server

TLS 1.2: SERVER CHANGE CIPHER SPEC

TLSv1.2 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec Content Type: Change Cipher Spec (20) Version: TLS 1.2 (0x0303) Length: 1 Change Cipher Spec Message

TLS 1.2: ENCRYPTED – SERVER FINISHED

TLSv1.2 Record Layer: Handshake Protocol: Encrypted Handshake Message Content Type: Handshake (22) Version: TLS 1.2 (0x0303) Length: 40 Handshake Protocol: Encrypted Handshake Message

To derive our symmetric keys, we have many steps.

- First create a pre-master secret; derived from server key share & the client key share. {jump to inner slide}
- Combine pre-master secret with client & server random values
- Creates master secret
- Combine that with client & server random values again
- Creates key buffer where symmetric keys come from
- Technically 2 symmetric keys are created. One for data flowing from browser to server & one for data flowing from server to browser.
- Great video at that link if you want to look into this TLS handshake a little more

Key share happens in 2nd & 3rd steps of the TLS 1.2 handshake

- in RSA, Client's key share is encrypted with server's public key (using asymmetric key encryption) so it isn't sent plaintext on the wire
- In ECDHE (Elliptical-Curve Diffie-Hellman Ephemeral), which we saw in our example, neither key share needs to be encrypted so everything is sent in plaintext over the wire
- Ultimately, the client's key share is combined with the server's key share
- both used to calculate the pre-master secret. {back up one slide}

TLS 1.2 VULNERABILITIES

- Protocol downgrade attacks by MITM
 - Only vulnerable if lower version of TLS/SSL and/or weak cipher suites are allowed
 - Once downgraded, other vulnerabilities are exploited to decrypt communication like lack of forward secrecy
- Just slower than 1.3

A few vulnerabilities with TLS 1.2

- Protocol downgrade attack can allow attacker to capture data and later decrypt it
- Cipher suites with forward secrecy make this harder; New symmetric keys are calculated for each packet transmission; MITM has to decrypt one packet transmission at a time, instead of doing one & getting them all
- TLS 1.3 is much faster; less roundtrips and quicker to reestablish a session
- Let's see how that works

MITM can do a protocol downgrade attack if lower versions of TLS/SSL are allowed and/or weak cipher suites can be used. This is usually due to a configuration on the server side.

Client guesses 2 or more cipher suites the server will pick

- calculates a key share for each of those cipher suites and sends them over
- Server picks one of those cipher suites & now has everything to create symmetric keys
- Sends blue data unencrypted
- Sends green data encrypted with symmetric keys
- Client calculates symmetric keys
- Sends finished message and can immediately send HTTP requests

TLS 1.3: CLIENT HELLO

TLSv1.3 Record Layer: Handshake Protocol: Client Hello Content Type: Handshake (22) Version: TLS 1.0 (0x0301) Length: 512 Handshake Protocol: Client Hello Handshake Type: Client Hello (1) Length: 508 Version: TLS 1.2 (0x0303) Random: eff9f856dafa6c01909e0d00565aab421d5204494233093b... Session ID Length: 32 Session ID: 49423a906a64d0d161ff0c0c62bc67a9c6181c65a7dae31e... Cipher Suites Length: 28 **Cipher Suites (14 suites)** Cipher Suite: TLS_AES_128_GCM_SHA256 (0x1301) Cipher Suite: TLS_CHACHA20_POLY1305_SHA256 (0x1303) Cipher Suite: TLS_AES_256_GCM_SHA384 (0X1302) Cipher Suite: TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 (0xc02b) Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f) Cipher Suite: TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 (0xcca9)

TLS 1.3: CLIENT HELLO (CONTINUED...)

Extension: key share (len 107)
Key Share extension
Client Key Share Length: 105
Key Share Entry: Group: x25519, Key Exchange length: 32
Group: x25519 (29)
Key Exchange Length: 32
Key Exchange: 252ca5a47155e89ebc138f5e01e155f534dadf242c296a35
Key Share Entry: Group: secp256r1, Key Exchange length: 65
Group: secp256r1 (23)
Key Exchange Length: 65
Key Exchange: 04c3d526016edc735a861fbb3a64d65a87084798f0d7af1a
Extension: supported_versions (len=9)
Type: supported_versions (43)
Length: 9
Supported Versions length: 8
Supported Version: TLS 1.3 (0x0304)
Supported Version: TLS 1.2 (0x0303)
Supported Version: TLS 1.1 (0x0302)
Supported Version: TLS 1.0 (0x0301)

TLS 1.3: SERVER HELLO

TLSv1.3 Record Layer: Handshake Protocol: Server Hello Content Type: Handshake (22) Length: 122 Handshake Protocol: Server Hello Handshake Type: Server Hello (2) Length: 118 Random: c405943892dde6a87cb91a6a57740dbdfcaa1a3b87565d59... Session ID Length: 32 Session ID: 49423a906a64d0d161ff0c0c62bc67a9c6181c65a7dae31e... Cipher Suite: TLS_AES_256_GCM_SHA384 (0x1302) Compression Method: null (0) Extensions Length: 13 Extension: supported_versions (len=2) Supported Version: TLS 1.3 (0x0304) Extension: key_share (len=36) Key Share extension Key Share Entry: Group: x25519, Key Exchange length: 32 Key Exchange: b754b50cfc3f1e6031d5ba9e05c3b6095c57f43127d...

TLS 1.3: SERVER CHANGE CIPHER SPEC

Encrypt everything using symmetric key

TLS 1.3: ENCRYPTED – SERVER CERTIFICATE AND FINISHED

> All the certificate info as before, except encrypted

TLS 1.3: SERVER CHANGE CIPHER SPEC

TLSv1.3 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec Content Type: Change Cipher Spec (20) Version: TLS 1.2 (0x0303) Length: 1 **Change Cipher Spec Message**

TLS 1.3: ENCRYPTED - SERVER CERTIFICATE AND FINISHED

TLSv1.3 Record Layer: Application Data Protocol: http-over-tls Opaque Type: Application Data (23) Version: TLS 1.2 (0x0303) Length: 32 Encrypted Application Data: 1e5507ebe81fab6eff7f3df93f5deaef4b0375a879a9...

TLS 1.3: CLIENT CHANGE CIPHER SPEC

• To use symmetric keys

TLS 1.3: ENCRYPTED – CLIENT FINISHED

 Application data can now begin flowing between client and server - encrypted Client Server

TLS 1.3: CLIENT CHANGE CIPHER SPEC

TLSv1.3 Record Layer: Change Cipher Spec Protocol: Change Cipher Spec Content Type: Change Cipher Spec (20) Version: TLS 1.2 (0x0303) Length: 1 **Change Cipher Spec Message**

TLS 1.3: ENCRYPTED – CLIENT FINISHED

TLSv1.3 Record Layer: Application Data Protocol: http-over-tls Opaque Type: Application Data (23) Version: TLS 1.2 (0x0303) Length: 69 Encrypted Application Data: 52502d5efc2fc17f51c7096dd21258df6c15220e62b...

ADVANTAGES OF 1.3

- Shorter handshake = faster
- Old, weaker cipher suites removed
- No TLS version negotiation (downgrade attacks)
- Perfect Forward Secrecy ciphers required
 - New symmetric keys are created for each transaction

TLS 1.2 & 1.3 ONLY WORK PROPERLY IF...

- Trust in Certificate Authorities
- Certificate details haven't been compromised
 - Pointing DNS records to a different, malicious IP
- Private keys stay private
- Server configured correctly
 - MITM can resubmit client packet (like money transfer). These are called *replay attacks*.

IF CONFIGURED PROPERLY, HTTPS PREVENTS...

View or modification of web traffic (MITM attacks)

IF...

- ALL connections use and force HTTPS
 - Attacks: SSL Stripping, Insecure images or CSS, etc
- CDNs, advertisers, external resources use HTTPS
- All links use HTTPS
 - Common Example: Insecure links in email trackers

HTTPS DOESN'T PREVENT OR PROTECT FROM...

- Tracking of metadata
- Malware distribution from your site or malicious site
 - Malicious websites use SSL certificates too
- Bad/insecure code
- Man-in-the-browser/device attacks
 - Malicious browser extensions or screen capture malware

HTTPS DOESN'T PREVENT OR PROTECT FROM...

- DNS Records compromise
- Content Scanning/SSL Inspection products

WHAT CAN YOU DO?

- Use HTTPS **EVERYWHERE** on your sites
- Learn how to install & configure it correctly
- Use TLS 1.3 where you can and at least use TLS 1.2
- Know where you're still vulnerable, and set up other protections
 - Like 2-factor authentication, code review/QA, and good code security practices
- Keep on learning

KEEP ON LEARNING

- SSL Labs <u>https://www.ssllabs.com/</u>
- The first few milliseconds of HTTPS by Joshua Thijssen at PHPNW16 - <u>https://www.youtube.com/watch?v=4Jg2ALtioMA</u>
- Why HTTPS For Everything? <u>https://https.cio.gov/everything/</u>
- Understanding the Limitations of HTTPS <u>https://</u> textslashplain.com/2018/02/14/understanding-the-limitations-of-https/
- An Overview of TLS 1.3 and Q&A <u>https://blog.cloudflare.com/</u> <u>tls-1-3-overview-and-q-and-a/</u>